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Introduction

B Background

The rapid development of deep learning technologies and the widespread deployment of sensing devices have
brought considerable attention to Internet of Things. The smart sensing application is one of the popular applications in
loT. Personalized Federated Learning (pFL) is a replacement to traditional Federated Learning to tackle the statistical
heterogeneity of clients' private datasets.
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Introduction

B Motivations: What are challenges that exist in Smart Sensing
Applications?

However, existing pFL methods encounter two challenges
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" Approach

B Proposal: How to solve these challenges?

a novel edge-cloud enabled weighted model aggregation-based pFL
framework named pFL-Sensing for smart sensing applications

Problem formulation We first formally define the pFL-based smart sensing application.
The optimization objective is determinated.
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" Approach
Problem formulation

We collaboratively train customized models vy, 7, ..., 7y through D4, D, ..., Dy, Where v; IS a customized

model for the it" sensing device. The optimal customized models are acquired through minimizing the global
loss:

m.
(4, Uy, ..., Dy) = argming YN, ﬁlLi
Li = L(Di; ﬁi; W),Vi € [N]

where £(+) stands for the global loss function. £; represents as the loss function of the it" sensing device related
to dataset D;, measuring the discrepancies between the predicted value and the real label of m; data samples. w

stands for the global model, which provides useful information to train the i*" sensing device's customized
model.



Approach

Problem modeling
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V; Customized model L;cg Cross-entropy loss function with inverse class frequencies

Lcg Cross-entropy loss function @f; The i*® sensing device’s j** adaptive aggregation weight

@ model training phase

In the model training phase, to alleviate the low
performance of the local model on the minority class
in sensing device data due to the global model
preference, we introduce ICF into the cross-entropy
loss function for updating the local model.
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Problem modeling -
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B Adaptive Weight Calculation (AWC)
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Retained hierarchies, which do not participate in hierarchical
aggregation and computing adaptive aggregation weights

Other hierarchies, which engage in hierarchical aggregation

a TopK strategy is introduced into the AWC. The key
idea of the TopK is to heuristically retain the partial
hierarchies of the intermediate model based on the top
k aggregation weights. These preserved hierarchies
are directly included as a part of the customized
model  without participating in hierarchical
aggregation, thus reducing the computational cost of
aggregation weights for k hierarchies.
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B EXxperiment Setup

® \\/e conduct experiments to evaluate the performance of pFL-Sensing.
® Specifically, we choose the CIFAR-100, Tiny-ImageNet, and AG News as experiment

datasets.

® \We employ the Dirichlet distribution simulate the data heterogeneity.
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B Experiment Setup

® The parameter settings are shown in the table.

Communication round E 500
Batch size 10
The number of clients N 20
Initial aggregation weights 0.5
Learning rate n 0.1
The defaultparameter of the Dirichlet

: 0.1

function

® And the indicators include classification accuracy.



" Experiment

Pathological Heterogeneous Setting: Compared with
these baselines, pFL-Sensing achieves the best
performance, demonstrating how considering the global
model preference with the ICA and dynamic role
differences of model hierarchy with the AWC can improve
classification precision.

Practical Heterogeneous Setting: Compared with these
baselines, pFL-Sensing achieves the highest classification
accuracy because of the inclusion of the global model
preference and dynamic role differences of model
hierarchy. In contrast to the 4-hierarchy CNN, ResNet-18
IS regarded as a large backbone with more hierarchies.

B Analysis of Classification Performance Comparison

Setting pathological heter setting practical heter setting
Methods CIFAR-100 | TINY CIFAR-100 | TINY [ TINY* | AG News
FedAvg 25.98 14.20 31.98 19.46 | 19.45 79.57
Per-FedAvg 56.80 28.06 44.28 25.07 | 21.81 93.27
Ditto 67.23 40.23 52.87 32.15 | 3592 95.45
FedMe 58.20 27.71 47.34 2693 | 33.44 91.41
edAMP 64.34 37.15 47.69 2799 | 29.11 94,18
FedPHP 63.09 37.88 50.52 35.69 | 29.90 94.38
FedFomo 62.49 35.87 45.39 30.33 | 32.84 95.84
PartialFed 65.35 37.76 51.37 3278 | 36.91 94,87
pFL-Sensing 68.76 42.16 54.19 39.38 | 40.42 95.93




B Analysis of Aggregation Weight Evolution

In the early stages, since the customized model needs to learn personalized knowledges from
individual clients, the intermediate model is given larger weights.

As the communication rounds iterate, generalized information requires to be considered for the
customized model. Meanwhile, the customized model gradually converges. As a result, the
aggregation weights of the intermediate model progressively decrease and tend to stabilize.
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¢ Conclusion

Conclusion
® In this paper, we have proposed an edge-cloud enabled weighted model aggregation-based pFL
framework named pFL-Sensing for smart sensing applications. Each edge server has generated a
customized model through two phases-a model training phase and a model aggregation phase.
> In the former phase, to alleviate the global model preference, we have introduced the ICF into the loss
function for local model training.
> In the latter phase, we have integrated hierarchical aggregation and the AWC. We have proposed
hierarchical aggregation to aggregate each hierarchy of the local model and the intermediate model with
aggregation weights to produce an individual customized model for each client. We also have designed the
AWC to adaptively update aggregation weights based on dynamic role differences of model hierarchy.

Future Work

® Experiments on large-scale datasets

® Further improve the accuracy
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Thanks for your attention!
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